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Experimental and theoretical research shows that the presence of gas and liquid in rocks has a consider-
able effect on the dynamics of the expansion of an underground cavity resulting from an underground explosion,
Using his water head model Butkovich [1] investigated the influence of water on mechanical effects of powerful
underground explosions. ¥ was established that an increase in the amount of water in rock leads to anappre-
ciable increase of the peak pressures at a compression wave front, The expansion of a cavity in a gas- and
water-saturated medium was studied in [2] neglecting strength effects, Experiments [3] show that a correct
theoretical description of the explosion process requires taking account of the elastoplastic properties of a
gas- and water-saturated medium. In the present paper we present a numerical solution of the problem of the
expansion of an underground cavity in a gas- and water~saturated elastoplastic medium as the result of an
underground explosion,

1. Suppose at time zero an amount of energy W is liberated instantaneously in an explosion in a spherical
cavity of radius R, in a multicomponent medium. We assume that the material in the cavity is an ideal gas with
an adiabatic exponent y=1,4. In general the adiabatic exponent changes during the expansion of the cavity, but
we neglect this change and focus our attention mainly on the qualitative behavior of the multicomponent medium
during the explosion. We describe the spherically symmetric motion of the medium by the hydrodynamic equa-
tions, taking account of strength effects, The initial equations in Lagrangian variables have the form

dv/ot = v{duldr 4 2ulr},
duldt = v{do, for 4 2tir}, (1.1)
deldt -+ pavidt = (2/3)yt{duldr — ulr}.

The first of Eqs. (1.1) is the equation of continuity, the second is the equation of motion, and the third is the
energy equation, Here v and e are the specific volume and specific energy of the multicomponent medium, v,

is the initial specific volume, u is the velocity, o}, and Gy are the radial and tangential components of the stress
tensor, T =0y~ 0y is the shear stress, p=—(1/3) (‘Tr+2“cp) is the pressure, t is the time, and r is the Eulerian
coordinate., The right-hand side of the last of Egs. (1.1) is related to the work done by the forces of plastic
deformation arising during the motion of the medium,

The system of equations (1.1) is completed by the elastoplastic relations and the equations of state.
We describe the mechanical properties of the medium in the elastic range by Hooke's law

0t/0t = 2G(0ul/dr — u/r), (1.2)

where G is the shear modulus. In the plastic range we use the Tresca yield criterion

|t] = 6* = const, (1.3)

where o* is the yield stress. By describing the plastic properties of the medium within the framework of the
ideal plasticity model (1.3) we do not take account of the phenomenon of dry friction which is characteristic of
soils, However, taking account of the plastic properties of the material in the form (1.3) is very simple and

enables us to develop the main qualitative regularities of the dynamies of a gas- and water-saturated medium.

To take account of the gas and moisture saturation of 2 medium we chose the approach developed in [2, 4]
which takes account of the multicomponent medium by a model equation of state with equal pressures and tem-~
peratures in all components. The definitions of the total specific energy and the total specific volume for a
mixture yield the following relations:

Ry, (1.4)
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where the R are the weight contents of the components (the subsecript 1 corresponds to the solid component,
2 to water, and 3 to gas), the ej are the specific internal energies, and the vi are the specific volumes of the
components, The equations of state of the solid and fluid components of the mixture were taken in the Mie~
Gruneisen form [5]. The gas in the mixture was assumed ideal with vy =1.7.

Using the assumption of the equality of pressures in the components of the medium we neglect effects
having characteristic times of the order of the time of the dynamic relaxation of stresses between components,
which ordinarily does not exceed 107 sec. This assumption is justified since the characteristic times of the
evolution of an explosion are longer than 1073 sec. Our assumption of equal temperatures of the components
is justified by the fact that according to [1] the characteristic times of equalizing temperatures is 1079-107¢
sec, which is shorter than the characteristic times of the evolution of an explosion. We assume that the ex-
pansion of the gas in the cavity is described by the same system (1.1) with 0*=0, and take as the equation of
state the equation of state of an ideal gas with y=1.4. In this way we take account of the complex gasdynamic
picture of the motion of the gas in the cavity. For the numerical solution the system of equations (1.1)-(1.4)
was replaced by a system of difference equations approximating the initial system to second-order accuracy
in At and Ar, where At and Ar are the sizes of the time and space nets. The hydrodynamic discontinuities i#i
the difference equations were smoothed out by introducing a linear—quadratic artificial viscosity to ensure
the possibility of a continuous solution. The stability of the calculation was ensured by an appropriate choice
of the time step At, The pressure in the initial cavity and the initial values of p and e in the surrounding soil
were specified, The velocity u at t =0 was assumed zero everywhere, Boundary conditions were specified at
the center (r=0) and ahead of the shock front, A computer program was written for the difference eguations
and used to perform the numerical calculations,

2. Numerical calculations were performed for G =100 kbar, 6%=150 bar, and pg=600 bar, where pg 18
the background pressure in the medium. In addition, calculations were performed with ¥=0 in order to find
the influence of strength effects. The initial pressure in the cavity was 400 kbar in all the variations caleu-
lated. In the numerical calculations the values of R, and R and the gas and water saturation of the soil were
varied. The numerical calculations showed that for t > 0 a shock wave is propagated from the initial cavity
boundary in the surrounding rock. Within the cavity a rarefaction wave travels through the gas to the center,
is reflected back to the cavity wall, etc. From now on we do not discuss the behavior of the gas in the cavity
since we are primarily interested in the behavior of the surrounding medium. Figures 1 and 2 show the radial
distributions of pressure and the radial and tangential stresses for various values of the parameters at spec-
ified times. The dimensionless radius r/R, is plotted along the horizontal axis, Curves 1-3 represent p, O,
and o respectively for R;=0.9684, R,=0.03, R3=0.0016 for A =t/t,=32.5, where t,=Ry/VGv, (Fig. 1), and A=
70,0 (Fig. 2). Curves 4-6 represent p, o, and oy for Ry = 0.8968, Ry = 0.1, Ry = 0.0032 for A = 32.5 (Fig. 1)
and A=70,0 (Fig. 2). Curve 7 shows the value of p calculated for R;=0.9684, R,=0.03, R3=0.0016 for A=32.5
(Fig. 1) and A=70,0 (Fig. 2) for zero strength (c*=0). This curve is shown for comparison., I is clear that
an elastic precursor is propagated in front of the shock wave whose front can be identified with the position of
the maxima, The presence of the elastic precursor leads to the sharp bend in the curves for o, (r) (Fig. 1,
curves 2 and 5), By using a linear—quadratic artificial viscosity the discontinuities are smoothed out. There-
fore one can speak of an elastic precursor only qualitatively, since its radial profile is determined by a pseudo-
viscosity. Calculations show that to the right of the vertical dashed line the material is loaded elastically in

106



400

p, bar
A
300 //

200

.

\\
=

Q
Q
N

80 +/R,

4 AN\
N\ | =

10° 4 ' 70

w0° w0’ 102 r/®, 10 w0’ 0% Rlt)/R,

Fig. 3 Fig. 4

ELS

accord with Eq. (1.2). Then plastic flow begins and continues up to the maximum value of the curves, After
the pressure reaches its peak value the unloading of the material is at first elastic. Beyond the range of elastic
unloading the material is unloaded plastically. Figure 3 shows the distribution of peak pressures as a function
of r/R,. Curve 1 corresponds to Ry=1, R;=0, Rg=0; 2) R;=0.99, R,=0.01, R3=0; 3) R;=0.97, R,=0.03, R3=0;
4) R;=0.9, R,=0.1, Rg=0; 5) R;=0.85, R,=0.15, R3=0; 6) R;=0.9968, Ry=0, Rg=0.0032; 7) R;=0.991, R,=0,
Ry=0,009, We note that the porosity of the material for curves 2 and 6 and for 3 and 7 is the same, A small
difference in weight contents of water and gas (the latter approximately one-third as large) involves an appre~
ciable background pressure (pg=200 bar), Figure 3 shows that the peak pressures in the loading wave de-
crease sharply with an increase in moisture content, Replacing water by gas leads to a still stronger damp-
ing of the shock wave. The results obtained are in qualitative agreement with the results in [2], The sharper
change in the character of the damping of the peak stresses with an increase in gas and water content noted in
[2] results from the fact that the calculations in [2] were performed for zero back pressure. The log—log plots
in Fig. 3 show that the peak pressures vary as a power of the radius for R3=0. The deviation of curves 1-5
from linearity for large r results from the transformation of the shock wave into an elastic wave.

The curves in Fig, 4 characterize the ratio of the total kinetic energy of all the moving material to the
total energy of the explosion (§=ey/W) as a function of the position of the boundary of the material disturbed
by the motion R(t)/Ro. Curves 1-6 correspond to the following gas and water contents: 1) Ry=1, Ry=0, R,=0;
2) R;=0.97, R,=0,03, R;=0; 3) R{=0.9, R,=0.1, R;=0; 4) R;=0.85, R;=0.15, R3=0; 5) R;=0.9968, R,=0, R;=
0.0032; 6) R;=0.991, R,=0, R3=0,009. The results can be interpreted in the following way. Initially the value
of & increases, and in this stage there is a transformation of the energy of the gas in the cavity to kinetic en-
ergy of the surrounding medium. As the multicomponent medium is set in motion there is a dissipation of
energy both in the shock transition and in plastic flow. Therefore the parameter d is always much smaller
than unity, From a certain instant the dissipation process begins to predominate over the pumping of energy
from the cavity. As a result the kinetic energy of the moving medium begins to decrease as the shock wave
is propagated. Finally, for R¢)/R,> 100 all the curves have constant asymptotes. This is related to the end
of plastic flow; further motion is elastic. In the proposed model there is no dissipation of energy in the elastic
region, which leads asymptotically to a constant value of 6, Tt is clear that this asymptotic value of & is smaller
the larger the water content (curves i-4). For zero water content (curves 5, 6) the asymptotic value of é de-
creases with increasing gas content. Thus the higher the gas content, i.e., the higher the compressibility of
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the multicomponent medium, the smaller is the fraction of the energy of the explosion transformed into en-
ergy of elastic waves and residual elastic strains, Figure 5 shows the time dependence of the radius of the
cavity a(t)/Ro as a function of A, Curve 1 corresponds to o*=0, R;=0.9684, R,=0,03, R;=0,0016; 2) R;=1, R,y=
0, R3=0; 3) R;=0.85, R,=0.15, R3=0; 4) R;=0.991, R,=0, R3=0,009, For zero strength (curve 1) the final
maximum size of the cavity is determined solely by the back pressure pg. The final size of the cavity de-
creases with increasing compressibility (with an increase in water and gas content). This is evidently re-
lated to the increase in the dissipation of the energy of the explosion (cf. Fig. 4) with an increase in the gas
and water saturation,

We note that inall the variations calculated the backward motion of the cavity did not exceed 5-7%. This
result is in agreement with data in [6].

The numerical results presented above show the effect of a change in gas and water contents on an ex-
plosion in rock., For identical initial porosity the mechanical effect of an explosion increases with an increase
in the water saturation of the rock, Replacing the gas in the pores by water leads to an appreciable increase
in peak pressures at the shock front, a larger value of the energy radiated in elastic waves, and a larger size
of the cavity. Physically this is related to the decrease in compressibility of the continuous medium with a
decrease in gas content and a corresponding increase in water content. Analysis of the results of the calcu-
lation shows that taking account of strength effects determines the final size of the cavity, For oc*=0 the size
of the cavity is appreciably larger than the corresponding size for o* #0, The difference in values of the peak
stresses is 20-25%. A consideration of the energy characteristics of the medium shows that the dissipation
of energy of an explosion increases with increasing gas and water content,
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